Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics.more » « less
- 
            The structural, electronic, and optical properties of CdSe/CdS core–shell colloidal quantum dot molecules, a new class of coupled quantum dot dimers, are explored using atomistic approaches. Unlike the case of dimers grown by molecular beam epitaxy, simulated strain profile maps of free-standing colloidal dimers show negligible additional strain resulting from the attachment. The electronic properties of the relaxed dimers are described within a semiempirical pseudopotential model combined with the Bethe–Salpeter equation within the static screening approximation to account for electron–hole correlations. The interplay of strain, hybridization (tunneling splitting), quantum confinement, and electron–hole binding energies on the optical properties is analyzed and discussed. The effects of the dimensions of the neck connecting the two quantum dot building blocks, as well as the shell thickness, are studied.more » « less
- 
            Abstract Doped heavy metal‐free III–V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p–n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short‐wave IR detection and emission applications, manifest heavy n‐type character poising a challenge for their transition to p‐type behavior. The p‐type doping of InAs NCs is presented with Zn – enabling control over the charge carrier type in InAs QDs field effect transistors. The post‐synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p‐type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+replacing In3+is established by X‐ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high‐resolution electron microscopy corroborated by X‐ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short‐wave infrared region utilizing heavy‐metal free nanocrystal building blocks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
